Hosted by IDTechEx
Artificial Intelligence Research
An expert outlook on the world of AI
HomeEventsReportsTVCareersAbout UsSign-up or LoginIDTechExTwitterFacebookLinkedInYoutubeRSSForward To Friend
Artificial Intelligence Research
Posted on September 11, 2018

Forecasting earthquake aftershocks with AI

poster ad small
From hurricanes and floods to volcanoes and earthquakes, the Earth is continuously evolving in fits and spurts of dramatic activity. Earthquakes and subsequent tsunamis alone have caused massive destruction in the last decade.
 
Earthquakes typically occur in sequences: an initial "mainshock" (the event that usually gets the headlines) is often followed by a set of "aftershocks." Although these aftershocks are usually smaller than the main shock, in some cases, they may significantly hamper recovery efforts. Although the timing and size of aftershocks has been understood and explained by established empirical laws, forecasting the locations of these events has proven more challenging.
 
A group from Harvard University teamed up with machine learning experts at Google to see if they could apply deep learning to explain where aftershocks might occur, starting with a database of information on more than 118 major earthquakes from around the world.
 
From there, the team applied a neural net to analyze the relationships between static stress changes caused by the mainshocks and aftershock locations. The algorithm was able to identify useful patterns.
 
The end result was an improved model to forecast aftershock locations and while this system is still imprecise, it's a motivating step forward. Machine learning-based forecasts may one day help deploy emergency services and inform evacuation plans for areas at risk of an aftershock.
 
Webinars Generic Banner
There was also an unintended consequence of the research: it helped to identify physical quantities that may be important in earthquake generation. When the team applied neural networks to the data set, they were able to look under the hood at the specific combinations of factors that it found important and useful for that forecast, rather than just taking the forecasted results at face value. This opens up new possibilities for finding potential physical theories that may allow us to better understand natural phenomena.
 
The team is looking forward to seeing what machine learning can do in the future to unravel the mysteries behind earthquakes, in an effort to mitigate their harmful effects.
 
Source and top image: Google
Top image: Eventfinda